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1. Solve the following general inhomogeneous initial-boundary-value problem for wave equation on half-
line: 

vtt − c2vxx = f(x, t), x > 0, t > 0

v(x, 0) = φ(x), vt(x, 0) = ψ(x), x > 0

v(0, t) = h(t), t > 0

with compatibility conditions φ(0) = h(0) and ψ(0) = h′(0).

Solution: First, consider the following two problems:
v1
tt − c2v1

xx = f(x, t), x > 0, t > 0

v1(x, 0) = φ(x), v1
t (x, 0) = ψ(x), x > 0

v1(0, t) = 0, t > 0

(1)

and 
v2
tt − c2v2

xx = 0, x > 0, t > 0

v2(x, 0) = 0, v2
t (x, 0) = 0, x > 0

v2(0, t) = h(t), t > 0

(2)

then v = v1 + v2 is the solution to original inhomogeneous IBVP.

For problem (1), by reflextion method, the solution formula is given by

v1 =


1

2
(φ(x+ ct) + φ(x− ct)) +

1

2c

∫ x+ct

x−ct
ψ(y)dy +

∫ t

0

∫ x+c(t−s)

x−c(t−s)
f(y, s)dyds, x > ct

1

2
(φ(x+ ct)− φ(ct− x)) +

1

2c

∫ x+ct

ct−x
ψ(y)dy + (

∫ t−x
c

0

∫ x+c(t−s)

c(t−s)−x
+

∫ t

t−x
c

∫ x+c(t−s)

x−c(t−s)
)f(y, s)dyds, x < ct.

For problem (2), the solution has the form of v2 = F (x+ ct) +G(x− ct). The initial conditions imply
that for x > 0

F (x) +G(x) = 0, F ′(x)−G′(x) = 0

then F (x) = −G(x) = C with constant C for x > 0. Let F̃ = F−C, G̃ = G+C, then F̃ (x) = G̃(x) = 0
for x > 0, and v2 = F (x + ct) + G(x − ct) = F̃ (x + ct) + G̃(x − ct). While the boundary condition
implies that for t > 0

F̃ (ct) + G̃(−ct) = h(t)

Notice that F̃ (x) = 0 for x > 0, thus G̃(−ct) = h(t), i.e. G̃(x) = h(−x
c ) for x < 0. Hence the general

solution to (2) is

v2 =

 0, x > ct

0 + G̃(x− ct) = h(t− x

c
), x < ct

Therefore,

v =


1

2
(φ(x+ ct) + φ(x− ct)) +

1

2c

∫ x+ct

x−ct
ψ(y)dy +

∫∫
∆
f(y, s)dyds, x > ct

1

2
(φ(x+ ct)− φ(ct− x)) +

1

2c

∫ x+ct

ct−x
ψ(y)dy +

∫∫
D
f(y, s)dyds+ h(t− x

c
), x < ct

1



Figure 1: The graphs of eigenfunctions

where ∆ and D are characteristic domains as shown in v1.

2. Discuss the graphs of the eigenfunction Xn(x) = sin(nπxl ) for n = 1, 2, 3, 4.

Solution: See figure 1 on page 84 or the above figure: The red line represents sin(πxl ), the purple line
represents sin(2πx

l ), the orange line represents sin(3πx
l ) and the black line represents sin(4πx

l ).

Note that the minimal eigenvalue is (πl )
2 which is called the principal eigenvalue, and its corresponding

eigenfunction is sin(πxl ) which is always positive when 0 < x < l.

3. Verify directly that the following eigenvalue problem

−X ′′(x) = λX(x)

X(0) = X(l) = 0

has no zero or negative eigenvalues.

Solution: Case 1: If λ = 0, then X ′′(x) = 0. The general solution is

X(x) = ax+ b

where a, b are constants. And X(0) = X(l) = 0 implies that a = b = 0, so that X(x) = 0. Therefore
0 is not an eigenvalue.

Case 2: If λ < 0, there exists γ > 0 such that λ = −γ2. Then X ′′(x) − γ2X(x) = 0. The general
solution is

X(x) = Aeγx +Be−γx

where A,B are constants. And X(0) = X(l) = 0 implies that A = B = 0, so that X(x) = 0. Therefore
λ can not be negative.

4. Solve the following eigenvalue problem

−X ′′(x) = λX(x)
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X(0) = 0, X ′(l) = 0

Solution: First, we claim that all eigenvalues are positive.

Multiplying −X ′′(x) = λX(x) by X(x) and integrating w.r.t x from 0 to l give that

λ

∫ l

0
|X(x)|2dx = −

∫ l

0
X ′′(x)X(x)dx = −X ′(x)X(x)

∣∣∣l
0

+

∫ l

0
|X ′(x)|2dx =

∫ l

0
|X ′(x)|2dx

where we have used the boundary conditions. Thus λ must be real and nonnegative. Furthermore,
λ = 0 if and only if

∫ l
0 |X

′(x)|2dx = 0 which implies that X ′(x) = 0 and X(x) = C. In this case,
X(0) = 0 tells that X(x) = C = 0. Thus the eigenvalue must be positive.

Then, let λ = β2 with β > 0. The general solution to −X ′′(x) = λX(x) is

X(x) = A cos(βx) +B sin(βx)

Combining with boundary conditions, we have X(0) = A = 0 and X ′(l) = βB cos(βl) = 0. Then
βl = π

2 + nπ for n = 0, 1, 2 · · · . The eigenvalues are λn = ( π2l + nπ
l )2 and corresponding eigenfunctions

are Xn(x) = sin((π2 + nπ)x), n = 0, 1, 2 · · ·
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